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OBJECTIVE—To search for a possible association of type 1
diabetes with 10 validated type 2 diabetes loci, i.e., PPARG,
KCNJ11, WFS1, HNF1B, IDE/HHEX, SLC30A8, CDKAL1,
CDKN2A/B, IGF2BP2, and FTO/RPGRIP1L.

RESEARCH DESIGN AND METHODS—Two European pop-
ulation samples were studied: 1) one case-control cohort of 514
type 1 diabetic subjects and 2,027 control subjects and 2) one
family cohort of 483 complete type 1 diabetic case-parent trios
(total 997 affected). A total of 13 tag single nucleotide polymor-
phisms (SNPs) from the 10 type 2 diabetes loci were analyzed for
type 1 diabetes association.

RESULTS—No association of type 1 diabetes was found with
any of the 10 type 2 diabetes loci, and no age-at-onset effect was
detected. By combined analysis using the Wellcome Trust Case-
Control Consortium type 1 diabetes data, SNP rs1412829 in the
CDKN2A/B locus bordered on significance (P � 0.039) (odds
ratio 0.929 [95% CI 0.867–0.995]), which did not reach the
statistical significance threshold adjusted for 13 tests (� �
0.00385).

CONCLUSIONS—This study suggests that the type 2 diabetes
loci do not play any obvious role in type 1 diabetes genetic
susceptibility. The distinct molecular mechanisms of the two
diseases highlighted the importance of differentiation diagnosis
and different treatment principles. Diabetes 57:1983–1986,
2008

T
ype 1 and type 2 diabetes both result from the
metabolic consequences of inadequate insulin
effect and have similar complications but appear
to be due to completely distinct pathogenetic

mechanisms. Type 1 diabetes results from autoimmune
�-cell destruction leading to insulin deficiency (1),
whereas type 2 diabetes is the end point of a progressive
insulin secretory defect on a background of insulin resis-
tance (1). Both diseases are of multifactorial etiology, in
which genetic predisposition plays a critical role and
behaves as a complex trait. The risk to case-siblings
relative to the general population is estimated to be as high

as 4- to 6-fold in type 2 diabetes and 15-fold in type 1
diabetes (2).

Despite the difference in the basic pathogenetic pro-
cesses for each type, an overlap in genetic predisposition
has been proposed (3) and is quite plausible. For example,
not all individuals with evidence of �-cell autoimmunity
will develop clinical type 1 diabetes, a situation in which
the factors responsible for impaired �-cell function and
survival in type 2 diabetes may tip the balance (3). The role
of inflammation in type 2 diabetes is increasingly recog-
nized (4) and suggests another common link.

Of the known type 1 diabetes–associated loci, the insu-
lin gene (INS) has been examined, and no type 2 diabetes
association was found (5). A parent-specific association of
INS has been (5) but has not been replicated by another
study. Recently, we (6) and others (7) examined the major
type 2 diabetes gene TCF7L2 for possible type 1 diabetes
association and found none. However, there has been no
systematic examination of locus overlap between the two
diseases; this gap in our understanding of diabetes has
become more important with the proliferation of solidly
replicated loci as a result of genome-wide association
(GWA) studies enabled by recent technical breakthroughs.
For type 2 diabetes, 11 loci have been validated involving
PPARG (peroxisome proliferator–activated receptor �),
KCNJ11 (potassium inwardly rectifying channel, subfam-
ily J, member 11), TCF7L2 (transcription factor 7-like 2),
WFS1 (Wolfram syndrome 1), and HNF1B (hepatocyte
nuclear factor 1 homeobox B) and 6 novel type 2 diabetes–
associated loci identified by GWA studies, i.e., IDE/HHEX,
SLC30A8, CDKAL1, CDKN2A/B, IGF2BP2, and FTO/
RPGRIP1L (8–13). The purpose of this study was to
scrutinize data from our recent GWA study of type 1
diabetes in order to search for possible evidence of
associated type 2 diabetes susceptibility loci.

RESEARCH DESIGN AND METHODS

Subjects and genotyping. As described in our previous report (14), two
European-descent samples were studied. The first consisted of 514 type 1
diabetic subjects and 2,027 control subjects (representing the addition of 969
healthy control subjects to the set described by Hakonarson et al. [14] in order
to increase statistical power) and 483 complete type 1 diabetes family trios
(affected child and both parents). The average age at onset of the type 1
diabetic children was mean � SD 7.89 � 4.05. The median age was 8 years,
with lower and upper quartiles at 4.6 and 11 years, respectively. All patients
were diagnosed under the age of 18 years and treated with insulin since
diagnosis, and none have stopped treatment for any reason. Ethnic back-
grounds were of mixed European descent. All samples were genotyped on the
Illumina Infinium II HumanHap550 array (Illumina, San Diego, CA). The
Research Ethics Board of the Montreal Children’s Hospital, the Research
Ethics Board of the Children’s Hospital of Philadelphia, and other participat-
ing centers approved the study, and written informed consent was obtained
from all subjects.
Type 2 diabetes–associated single nucleotide polymorphisms. As shown
in Table 1, 13 type 2 diabetes–associated single nucleotide polymorphisms
(SNPs) from the 10 type 2 diabetes loci were selected for the type 1 diabetes
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analysis. They represent either the SNP originally reported as type 2 diabetes
associated or a near-perfect proxy. The PPARG SNP rs1801282 is located at
the first coding exon of PPAR-�2 and causes the amino acid change Pro12Ala.
The two CDKAL1 SNPs rs4712523 and rs7756992 have an r 2 � 0.747. The two
CDKN2A/B SNPs rs1412829 and rs2383208 have an r 2 � 0.002. The two
IDE/HHEX SNPs rs1111875 and rs7923837 have an r 2 � 0.744. The type 2
diabetes association of KCNJ11 was found from a non-synonymous SNP
Glu23Lys (rs5219) at first. The rs5219 has an r 2 � 0.9 with rs5215 (8) and
therefore is well tagged by rs5215 in GWA studies (8,10). All of the 13 SNPs
have a genotyping success rate �98.7% and no Mendelian error in the 483
family trios. Only the WFS1 SNP rs10012946 showed borderline nominal
significance of divergence from Hardy-Weinberg equilibrium in the control
group, which did not reach the significance threshold adjusted for 13 tests
(� � 0.00385).
Statistical methods. For the case-control cohort, the potential population
stratification was corrected using the Eigenstrat algorithm (19) implemented
in the Eigensoft version 2.0 software (http://genepath.med.harvard.edu/
�reich/Software.htm). By the principal components analysis of population
structure (19), 42 case and 130 control subjects were identified and removed
as outliers. Therefore, 472 type 1 diabetic case and 1,897 control subjects were
analyzed for genetic association. For the family cohort, the transmission
disequilibrium test was performed using the Haploview software (www-
.broad.mit.edu/personal/jcbarret/haploview). For a joint analysis of the two
cohorts, we combined the two z scores weighted by the sample sizes.
According to the statistical power calculation for a case-control study with
unequal sample sizes proposed by Fleiss et al. (20), the case-control cohort of
472 type 1 diabetic case and 1,897 control subjects has the statistical power
equivalent to 756 case vs. 756 control subjects. The family cohort of 483
complete type 1 diabetic trios has the statistical power equivalent to 483 case
vs. 483 control subjects. The joint Z score was calculated as:

z � � 756

756 � 483
z1 � � 483

756 � 483
z2

where Z1 is of the case-control cohort and Z2 is of the family cohort. Each Z

score is equivalent to the square root of the respective �2 value. A protective
or undertransmitted minor allele corresponds to a negative Z score, whereas
a risk or overtransmitted minor allele corresponds to a positive Z score.

RESULTS AND DISCUSSION

As shown by our analysis (Table 2), none of the 13 SNPs
from the 10 type 2 diabetes loci show statistically signifi-
cant association. These 13 SNPs have a minor allele
frequency range from 0.116 to 0.397. The statistical power
of this study to detect an association from each SNP is
shown in Fig. 1. Our study had sufficient power to detect

an association with OR �1.20 for each SNP with different
allele frequency. To further increase statistical power, we
performed a combined analysis using the publicly avail-
able Wellcome Trust Case-Control Consortium (WTCCC)
data (supplementary Table 1 [available in an online appen-
dix at http://dx.doi.org/10,2337/db08-0270]). The WTCCC
tested 2,000 type 1 diabetic case and 3,000 control subjects
for 500 k SNPs (Affymetrix GeneChip) (8). As shown by
the association analysis (Table 3), 12 of the 13 SNPs did
not show statistical significance in either the WTCCC data
alone or the combined analysis with our dataset. SNP
rs1412829 in the CDKN2A/B locus met the significance
threshold of � � 0.00385 in the WTCCC data (P � 0.002)
(OR 0.879 [95% CI 0.810–0.954]) but not in the combined
analysis (P � 0.039) (0.929 [0.867–0.995]). CDKN2A and
CDKN2B encode two specific inhibitors of cyclin-depen-
dent kinase 4 (CDK4), i.e., p16INK4a and p15INK4b, respec-
tively. CDK5 and CDK4 play important roles in �-cell
function and proliferation (10), and, as such, the locus is a
reasonable functional candidate. Study of much larger
cohorts will be needed to evaluate the possibility of a very
weak effect in type 1 diabetes.

Our study suggests that the type 2 diabetes loci do not
play any obvious role in type 1 diabetes genetic suscepti-
bility. These known type 2 diabetes genes are mainly
involved in two mechanisms, i.e., pancreatic �-cell func-
tion and peripheral insulin sensitivity. To explore whether
these genes may promote the early onset of type 1 diabetes
by impairing insulin secretion or insulin sensitivity, we
also investigated the age-at-onset difference of different
genotypes for each type 2 diabetes SNP marker. As shown
by the one-way ANOVA test of age at onset of three
genotypes for each SNP (Table 2), no SNP has an obvious
effect on the type 1 diabetes age at onset. Unlike type 2
diabetes, type 1 diabetes typically has an acute onset that
can be reliably defined.

Both type 1 and type 2 diabetes are complex diseases.
With the rapid technological development of functional
genomics, distinct molecular mechanisms of the two dis-
eases are being recognized, establishing the basis of

TABLE 1
Type 2 diabetes–associated SNPs for the type 1 diabetes analysis

Locus Chr.

Reported type 2
diabetes

association (ref)
HumanHap500

marker
HapMap
CEU r2

Genotyping
success (%) MendErr HW P

PPARG 3p25 rs1801282 (15) rs2197423 1.000 99.9 0 0.803
IGF2BP2 3q27.2 rs4402960 (10,11,13) rs4402960 — 98.7 0 0.932

rs1470579 (13) 0.978
WFS1 4p16 rs10010131 (16) rs10012946 1.000 99.6 0 0.045
CDKAL1 6p22.3 rs10946398 (10) rs4712523 1.000 99.9 0 0.275

rs7754840 (10,11,13)
CDKAL1 6p22.3 rs7756992 (12) rs7756992 — 99.9 0 0.270
SLC30A8 8q24.11 rs13266634 (9–13) rs13266634 — 99.6 0 0.291
CDKN2A/B 9p21 rs564398 (10) rs1412829 0.965 99.9 0 0.533
CDKN2A/B 9p21 rs10811661 (10,11,13) rs2383208 1.000 99.9 0 0.875
IDE/HHEX 10q23.33 rs1111875 (9–11,13) rs1111875 — 100.0 0 0.552

rs5015480 (10) 0.958
IDE/HHEX 10q23.33 rs7923837 (9) rs7923837 — 100.0 0 0.856
KCNJ11 11p15 rs5215 (8,10) rs5215 — 99.7 0 0.067
FTO 16q12.2 rs8050136 (10,11) rs8050136 — 99.9 0 0.664
HNF1B 17cen-q21.3 rs7501939 (17) rs7501939 — 99.7 0 0.599

rs757210 (18) 0.811

HW, Hardy-Weinberg equilibrium test of the control group in the case-control cohort.
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different approaches for developing novel preventive or
therapeutic strategies for type 1 and type 2 diabetes. In
addition, this study highlights the importance of differen-
tiation diagnosis of adult-onset type 1 diabetes from type 2
diabetes. Because type 1 diabetes does not share common
genetic susceptibility with type 2 diabetes, it is important
to manage different treatment for adult type 1 diabetic
patients. Some issues remain for further studies on genetic
mechanisms of type 1 and type 2 diabetes. The type 1
diabetes association of CDKN2A/B needs to be confirmed
by an independent study with a large sample size. Assum-

ing a multiplicative effects model, an OR of 0.929, and a
minor allele frequency of 0.452, a study with 5,790 case and
5,790 control subjects has 80% statistical power to repli-
cate the association at � � 0.05. Both our study and the
WTCCC study focused on pediatric-onset type 1 diabetes,
and the possibility remains that type 2 diabetes loci may
have some effect in adult-onset cases. Finally, the involve-
ment of type 1 diabetes loci in type 2 diabetes genetics
needs further investigation, the testing of which will
require accurate phenotyping within the clinical spectrum
of type 2 diabetes. For example, it will be interesting to
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FIG. 1. The statistical power of this study to detect genetic associations with different minor allele frequencies (MAFs) at � � 0.05 level. The
PPARG SNP rs2197423 has an MAF � 0.116; the CDKN2A/B SNP rs2383208 has an MAF � 0.176; the SLC30A8 SNP rs13266634 and the CDKAL1

SNP rs7756992 have similar MAFs, average 0.294; the other nine SNPs, rs4402960, rs4712523, rs5215, rs10012946, rs7923837, rs1412829,
rs1111875, rs7501939, and rs8050136, have similar MAFs, average 0.364. x-axis, OR value; y-axis, statistical power.

TABLE 2
Type 1 diabetes association analysis

Name MA MAF Eigenstrat �2 Z CaCo* Z TDT† Z (P)‡ Age-at-onset F (P)§

rs2197423 A 0.116 0.364 	0.604 	0.705
	0.912
(0.362) 0.648 (0.523)

rs4402960 A 0.330 0.354 	0.595 	1.732
	1.546
(0.122) 0.512 (0.600)

rs10012946 A 0.362 0.103 	0.321 	0.332
	0.458
(0.647) 1.048 (0.371)

rs4712523 C 0.340 0.898 	0.948 	0.045
	0.769
(0.442) 0.756 (0.470)

rs7756992 C 0.296 0.040 	0.201 0.105
	0.091
(0.927) 0.781 (0.458)

rs13266634 A 0.292 0.624 	0.790 	0.249
	0.773
(0.440) 0.429 (0.652)

rs1412829 C 0.370 1.572 1.254 	0.327 0.775 (0.438) 0.614 (0.542)
rs2383208 C 0.176 2.312 1.521 0.445 1.466 (0.143) 0.159 (0.853)
rs1111875 A 0.392 0.082 0.287 0.000 0.224 (0.823) 0.549 (0.578)
rs7923837 A 0.370 0.035 0.188 0.617 0.532 (0.595) 0.421 (0.656)
rs5215 C 0.347 2.946 1.716 0.651 1.747 (0.081) 0.430 (0.651)
rs8050136 A 0.397 0.458 0.677 0.338 0.740 (0.459) 0.255 (0.775)
rs7501939 A 0.396 0.154 0.392 0.000 0.306 (0.759) 0.186 (0.906)

*Z score of the case-control cohort. †Z score of the family cohort. ‡Combined Z value and P value. §One-way ANOVA test of age-at-onset
difference of three genotypes. MA, minor allele; MAF, minor allele frequency.
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study all type 1 diabetes loci in the subset of insulin-
resistant, non–insulin-treated, adult-onset cases that are
positive for islet autoantibodies (21).
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TABLE 3
Combined analysis of the WTCCC data and our data

Name WTCCC MA WTCCC MAF Z (P) WTCCC Z (P) combined*

rs2197423 A 0.124 0.047 (0.962) 	0.494 (0.621)
rs4402960 A 0.320 	1.075 (0.282) 	1.775 (0.076)
rs10012946 A 0.402 	0.753 (0.452) 	0.878 (0.380)
rs4712523 C 0.319 	0.075 (0.940) 	0.510 (0.610)
rs7756992 C 0.277 1.052 (0.293) 0.801 (0.423)
rs13266634 A 0.285 1.588 (0.112) 0.838 (0.402)
rs1412829 C 0.452 	3.094 (0.002) 	2.060 (0.039)
rs2383208 C 0.162 1.173 (0.241) 1.808 (0.071)
rs1111875 A 0.411 	1.273 (0.203) 	0.903 (0.366)
rs7923837 A 0.381 	1.367 (0.172) 	0.800 (0.424)
rs5215 C 0.354 0.951 (0.342) 1.792 (0.073)
rs8050136 A 0.398 	0.765 (0.444) 	0.190 (0.850)
rs7501939 A 0.421 	0.207 (0.836) 0.010 (0.992)

*The WTCCC data were combined with our data by weighted Z scores. The WTCCC 2,000 case and 3,000 control subjects have the statistical
power equivalent to 2,400 case vs. 2,400 control subjects.
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